首页> 外文OA文献 >Convolutional Neural Networks and Data Augmentation for Spectral-Spatial Classification of Hyperspectral Images
【2h】

Convolutional Neural Networks and Data Augmentation for Spectral-Spatial Classification of Hyperspectral Images

机译:用于谱 - 空间的卷积神经网络和数据增强   高光谱图像的分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spectral-spatial classification of remotely sensed hyperspectral images hasbeen the subject of many studies in recent years. Current methods achieveexcellent performance on benchmark hyperspectral image labeling tasks when asufficient number of labeled pixels is available. However, in the presence ofonly very few labeled pixels, such classification becomes a challengingproblem. In this paper we propose to tackle this problem using convolutional neuralnetworks (CNNs) and data augmentation. Our newly developed method relies on theassumption of spectral-spatial locality: nearby pixels in a hyperspectral imageare related, in the sense that their spectra and their labels are likely to besimilar. We exploit this assumption to develop 1) a new data augmentationprocedure which adds new samples to the train set and 2) a tailored lossfunction which penalize differences among weights of the network correspondingto nearby wavelengths of the spectra. We train a simple single layerconvolutional neural network with this loss function and augmented train setand use it to classify all unlabeled pixels of the given image. To assess the efficacy of our method, we used five publicly availablehyperspectral images: Pavia Center, Pavia University, KSC, Indian Pines andSalina. On these images our method significantly outperforms other baselines.Notably, with just 1% of labeled pixels per class, on these dataset our methodachieves an accuracy of 99.5%, etc. Furthermore we show that our methodimproves over other baselines also in a supervised setting, when no overlapbetween train and test pixels is allowed. Overall our investigation demonstrates that spectral-spatial locality can beeasily embedded in a simple convolutional neural network through dataaugmentation and a tailored loss function.
机译:近年来,遥感高光谱图像的光谱空间分类已经成为许多研究的主题。当有足够数量的标记像素可用时,当前方法在基准高光谱图像标记任务上可获得出色的性能。然而,在只有很少的标记像素的情况下,这种分类成为具有挑战性的问题。在本文中,我们建议使用卷积神经网络(CNN)和数据增强来解决此问题。我们新开发的方法依赖于光谱空间局部性的假设:在高光谱图像中附近的像素是相关的,这意味着它们的光谱和标记可能相似。我们利用这一假设来开发1)一种新的数据增强过程,该过程将新样本添加到火车集合中; 2)量身定制的损失函数,该函数对对应于附近光谱波长的网络权重之间的差异进行了惩罚。我们使用此损失函数和增强的训练集训练一个简单的单层卷积神经网络,并使用它对给定图像的所有未标记像素进行分类。为了评估该方法的有效性,我们使用了五幅公开可用的高光谱图像:帕维亚中心,帕维亚大学,KSC,印度松和萨利纳。在这些图像上,我们的方法明显胜过其他基线。值得注意的是,每类只有1%的标记像素,在这些数据集上,我们的方法达到了99.5%的准确度,等等。此外,我们还表明,在有监督的设置下,我们的方法比其他基线有了改进,当训练像素与测试像素之间没有重叠时。总体而言,我们的研究表明,通过数据增强和量身定制的损失函数,可以轻松地将光谱空间局部嵌入简单的卷积神经网络中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号